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This paper is concerned with the problem of reflection and transmission of elastic waves due to an incident 
plane qSV-wave at a corrugated interface between two dissimilar monoclinic elastic half-spaces. Due to the 
corrugated nature of the interface, there exist regularly and irregularly reflected and transmitted elastic waves. 
Using Rayleigh's method of approximation, the reflection and transmission coefficients of regular and irregular 
waves are obtained for the first order of approximation. We have found that these coefficients are functions of the 
angle of incidence, elastic constants, corrugation and the frequency parameter. These coefficients are obtained for 
a special type of interface, cos z d py . We have computed these coefficients for a particular model and 
discussed the effects of corrugation and frequency parameter. 
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1. Introduction 

 
 Elastic wave propagation is fascinating subject that deals with numerous problems in various fields 
such as seismology, geophysics, tele-communication (signal processing), medicine (echography), metallurgy 
(non-destructive testing) and earthquake engineering. These waves are useful in detection of notches and 
faults in different types of materials such as in railway tracks, buried land-mines, etc. The technique of 
seismic wave propagation is a tool for investigating the internal structure of the Earth and also used for 
exploration of valuable materials such as minerals, crystals, fluids (oils, water), etc. beneath the earth 
surface. When the seismic signal passes through different layers/discontinuities inside the Earth, the 
phenomena of reflection and transmission take place. These signals carry lots of information about the Earth 
structures see: Chattopadhyay and Choudhury [1], Chattopadhyay et al. [2], Dowaikh and Ogden [3], Sheriff 
and Geldart [4], Singh [5], Singh and Khurana [6], Udias [7] and others. 
 The propagation of elastic waves and their reflection/transmission from discontinuities/ interfaces are a 
great concern of many researchers. Chattopadhyay and Saha [8, 9] obtained the reflection and transmission 
coefficients of P and qSV-waves at a plane interface between two different monoclinic media. Nayfeh [10] 
derived analytical expressions for the reflection and transmission coefficient from the interface of 
liquid/anisotropic half-spaces possessing monoclinic symmetry. Singh and Khurana [11] also investigated the 
reflection and transmission of P and SV-waves at the interface between two monoclinic elastic half-spaces. But 
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there is much experimental evidence that the discontinuities/interfaces between layers are not perfectly plane, 
but they are of irregular/corrugated nature. These irregular natures of the interfaces affect the reflection and 
transmission of elastic waves. Thus, it is important to take into account the problems related with the effects of 
irregular interfaces. It was Rayleigh [12] who first discussed the problems of reflection and transmission 
phenomena of light/sound waves from an irregular boundary surface. In his method, the function defining the 
corrugated interface in the expressions of boundary conditions is expanded in Fourier series and the unknown 
coefficients are determined upto any given order of approximation in terms of small parameter characteristics 
of magnitude and slope of corrugated interface. Later, Rayleigh's technique was applied to various other fields 
to study the reflection and transmission phenomena of waves at an irregular boundary surface. Several papers 
on scattering of elastic waves from boundary surfaces have appeared based on Rayleigh's method and other 
techniques, e.g. papers by Abubakar [13], Asano [14], Dunkin and Eringen [15], Gupta [16], Kuo and Nafe 
[17], Levy and Deresiewicz [18], Rice [19], Singh and Tomar [20, 21] and Tomar and Kaur [22]. 
 Chattopadhyay et al. [23] investigated the problem of reflection and transmission of plane quasi P-
waves at a corrugated interface between distinct triclinic elastic half-spaces. They obtained the closed form 
expressions of reflection and transmission coefficients using Rayleigh's method of approximation. Kaur and 
Tomar [24] investigated the problem of reflection and transmission of shear wave incident upon a corrugated 
interface between two monoclinic elastic half-spaces with the help of Rayleigh's technique. Kennett [25] 
studied the problem of seismic wave scattering by obstacles on interfaces based on an integral equation 
formulation using the first-order perturbation theory. Paul and Campillo [26] investigated the effect of small-
scale irregularities of a reflecting boundary on an elastic wave using a discretized form of boundary integral 
equations and a plane-wave decomposition of seismic wave fields. The scattering of plane harmonic P, SV 
or Rayleigh waves by two dimensions corrugated cavity completely embedded in an isotropic half-space or 
full-space was investigated by using a direct boundary integral method [27]. Singh and Singh [28] explained 
the problem of the effect of corrugation on an incident qSV-wave in pre-stressed elastic half-spaces with the 
help of Rayleigh's method of approximation. They found out the reflection and transmission coefficients of 
the regularly and irregularly reflected and transmitted waves. Singh and Tomar [29, 30] investigated the 
problem of qP-waves at a corrugated interface between two dissimilar monoclinic elastic half-spaces and 
obtained the reflection and transmission coefficients of the irregular waves using Rayleigh's technique. 
 In this paper, we have investigated the problem of reflection/transmission of qSV/qP-wave from a 
corrugated interface for an incident qSV-wave at a corrugated interface between two dissimilar monoclinic 
elastic half-spaces. Using Rayleigh's method of approximation, the expressions of the reflection and 
transmission coefficients of the irregular waves are obtained for the first order of approximation. These 
coefficients are derived and computed numerically for a special type of interface, cos z d py . We have 
found that these coefficients are functions of elastic constants, angle of propagation, frequency and 
corrugation parameters. 
 
2. Basic equations 

 
 The constitutive relations in a homogeneous anisotropic elastic material of monoclinic type with the 
yz-plane as the plane of symmetry are given by [11] 
 
   ,  ,11 11 11 12 22 13 33 14 23 22 12 11 22 22 23 33 24 23c e c e c e 2c e c e c e c e 2c e           
 
  ,   ,23 14 11 24 22 34 33 44 23 33 13 11 23 22 33 33 34 23c e c e c e 2c e c e c e c e 2c e           (2.1) 

 
     ,      ,12 55 13 56 12 13 56 13 66 122 c e c e 2 c e c e         

 
where ( , , )1 2 3u u uu  are components of displacement, ij  are stress tensors, ( ,   , , , ..., )ijc i j 1 2 3 6  are elastic 

constants and ije  is the strain tensor given by 
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 The equations of motion in such anisotropic materials without body forces are given by  
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where    is density of the medium. 
 Let us consider two dimensional wave propagation in the yz-plane so that 
 

  ,  ,   1
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     and      

3x z

 


 
. 

 
 The equations of motion in terms of displacements components may be written as 
 

    ,
2 2 22 2 2 2

3 3 32 2 2 2
22 44 24 34 24 23 242 2 2 2 2

u u uu u u u
c c c c 2c c c

y z y zy z y z t

     
       

       
  (2.3) 

 

    ,
2 2 2 22 2 2

3 3 3 32 2 2
24 34 44 33 34 23 242 2 2 2 2

u u u uu u u
c c c c 2c c c

y z y zy z y z t

     
       

       
    (2.4) 

 
 It may be noted that Eqs (2.3) and (2.4) are the equations of motion for the coupled qSV and qP-
waves. The solution of these equations may be taken in the form 

 

          , , , , exp ,2 3 2 3 2 3u u y z t Ad Ad k ct p y p z                                   (2.5) 

 
where c is the phase velocity, k is the wavenumber,  ( ,  ,  )2 30 p pp  is the unit propagation vector, d

( ,  ,  )2 30 d d  is the unit displacement vector. 

 Using these expressions of 2u  and 3u  in Eqs (2.3) and (2.4), we have  
 

    ,    (  ) ,2 2
2 3 2 3X c d Yd 0 Yd W c d 0                                                    (2.6) 

where 

   ,  ,  2 2 2 2
22 2 44 3 24 2 3 24 2 34 3 23 44 2 3X c p c p 2c p p Y c p c p c c p p        

   (2.7) 

  .2 2
44 2 33 3 34 2 3W c p c p 2c p p    

 

 Using Eq.(2.6), we get 
 

  , ( ) ,2 2 2
2 12 c X W X W 4Y                                                                          (2.8) 

 
where ( )ve  sign represents the phase velocity of qSV waves ( )2c  and ( )ve  sign represents that of qP 
waves ( ).1c  
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3. Problem formulation 
 

  Consider the Cartesian coordinates with the x and y-axis lying horizontal and the z-axis is vertical 
with positive direction pointing downward. Suppose two dissimilar homogeneous monoclinic half-spaces, 

   { ; : ,  ζ , }M y z y R z     and ' {( ; ) :  ,   ( ,ζ)}  M y z y R z    are separated by  ( )z y  , which is a 

periodic function of y independent of x whose mean value is zero. We will denote all elastic constants, stress 
tensors and displacement components in medium M without prime and those of M' with primes. The 
geometry of the problem is shown by Fig.1. The Fourier series expansion of ( )y , is given as 
 

      ,npy npy
n n

n 1

y e e


 




                             (3.1) 

 

where n  and n  are the coefficients of series expansion of order n, p is the wavenumber and 1   . 

Introduce constants d ; nc ; and ns  as 
 

  1
d

2  ,       n n
n

c s

2


 


,      ( , , ,..n 2 3 4  .), 

so that 

         cos sinn n
n 2

y dcos py c npy s npy




       .                            (3.2) 

 
 If the interface is represented by only one cosine term, i.e., ( )y = cos ( )d py , then the wavelength of 

corrugation is 2 /   and d is the amplitude of corrugation. 
 

 
 

Fig.1. Geometry of the problem. 
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 We shall now discuss the reflection and transmission of elastic waves due to the incident plane qSV-
wave at the corrugated interface,   ( )z y . Suppose a plane qSV-wave propagating in the half-space, M with 

an angle 0  and amplitude constant 0A  be incident at the corrugated interface. This incident wave gives rise 
to regularly and irregularly reflected and transmitted qSV and qP-waves [14]. 
 The full structures of reflected and transmitted waves are given by: 
(for the half-space, M) 

 

            ' exp  exp exp  exp  exp2 0 0 n n n n
n 1

u A P A P B Q A P B Q


   



     , (3.3) 

 

            'exp  exp  exp  exp  exp3 0 0 n n n n
n 1

u D P D P E Q D P E Q


   



      (3.4) 

 

where ( , )A D  are amplitude constants of the regularly reflected qSV-wave at angle   ,  ,  n nA D   are 

amplitude constants of the irregularly reflected qSV-waves at angles n
 , ( , ) B E  are amplitude constants of 

the regularly reflected qP-wave at angle  ,  ,  n nB E   are amplitude constants of the irregularly reflected 

qP-wave at angles n
  and the expressions of ' ,  ,  ,  Q,   0 n nP P P Q   are given by '  sin  cos 0 0
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 These amplitude constants satisfy the following relations [11] 
 

  ,     ,   ,   ,    ,0 0 0 10 n n n n 1n nA F D A FD B F E A F D B F E           (3.5) 
where 
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                   ,   
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        ( )2 2 2
1 20 20 20 20 202 c X W X W 4Y      . 

 
(for the half-space, M') 
 

   '   ( )  ( ) { ( ) exp }2 n n n n
n 1

u G exp R H exp S G exp R H S


   



    ,                    (3.6) 

 

     '  ( )  ( { exp exp }3 n n n n
n 1

u I exp R J exp P I R J S


   



    ,                  (3.7) 
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where ( ,  )G I  are amplitude constants of the regularly transmitted qSV-wave at angle  ,  , n nG I   are 

amplitude constants of the irregularly transmitted qSV-waves at angles , ( ,  ) n H J  are amplitude constants of 

the regularly transmitted qP-wave at angle  ,  ,  n nH J   are amplitude constants of the irregularly transmitted 

qP-waves at angles n
   and the expressions of ,  ,  , n nR R S S    are given by 

'

sin cos

2

y z
R t

C
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' '

 sin  cos sin cos
,  n n
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y z
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 These amplitude constants also satisfy the following relations 
 

                 ,   ,   ,   ,20 30 n 2n n n 3n nG F I H F J G F I H F J          (3.8) 
where  
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     ' ',  
2 22 22 2
2 30 30 30 30 30 1 40 40 40 40 402 c X W X W 4Y 2 c X W X W 4Y             . 

 
 The expressions of X, Y and W with corresponding suffixes are obtained from Eq.(2.7) by inserting 
( ,  )2 3p p ; for the incident qSV-wave:  sin , cos 0 0   , for the regularly reflected qSV -wave: 

 sin ,  cos ,   for the irregularly reflected qSV-wave:  sin ,  cos n n
   , for the regularly reflected qP-wave: 

 sin ,  cos ,   for the irregularly reflected qP-wave:  sin ,  cos n n
   , for the regular transmitted qSV-wave: 

(sin , cos )   ; for the irregularly transmitted qSV -wave:  sin , cos n n
    , for the regularly transmitted 

qP-wave: (sin , cos )   , for irregularly transmitted qP-wave:  sin , cos .n n
     

 The Snell law of this problem is given by [14] 
 

  
' '

sin sin sin sin sin

( ) ( ) ( ) ( ) ( )
0

0 0 2 1 a2 1

1

c c C cC C

    
    

    
              (3.9) 

 
where ac is apparent velocity. 
 `Moreover, spectrum theorem gives the relations between the angle of the regular wave and those 
of irregular waves [13] 
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                          (3.10) 

 

where ( )ve  signs of the right hand side correspond to ( )ve  signs of the left hand side, while ( )ve  signs 
of the right hand side correspond to ( )ve  signs of the left hand side of the equation. 
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4. Boundary condition 
 

 The component of displacements and tractions (normal and shear) are continuous at the corrugated 
interface. Mathematically, these conditions at  ( )z y   may be written as 

             

  ' ',   2 2 3 3u u u u  ,                                                       (4.1) 
              

     ' ' ' ' ' ' ' '2 2
32 33 22 23 32 33 22 23                   ,                                     (4.2) 

              

  ' ' ' ' ' ' '2 2
33 23 22 33 23 222 2               ,         (4.3) 

 

where '  is the derivative of    with respect to y .  
 Inserting Eq.(2.1) into Eqs (4.2) and (4.3), we get  
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 Using Eqs (3.3), (3.4), (3.6), (3.7), (3.9) and (3.10) in Eqs (4.1), (4.4) and (4.5), we get 
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3. Solution of first order approximation 

 
 We assume that the amplitude of the corrugated interface is very small so that higher powers of   

are neglected like 
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 Using Eqs (3.5), (3.8) and (5.1) in Eqs (4.6)-(4.9) and collecting terms independent of   and y, we 
obtain a set of equations 
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On solving Eq.(5.2), we get 
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where 
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and the values of D , E , I  and J are obtained by replacing first, second, third and fourth column of   
with column matrix, T respectively. This equation gives the ratios of the amplitude constants corresponding 
to the vertical components of displacement. 
 The ratios of the amplitude constants corresponding to horizontal components of displacement is 
obtained with the help of Eqs (3.5), (3.8) and (5.3) as 
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 Now, the amplitude of the incident qSV-wave is given by 2 2
0 0A D = 2

0 01 F D . Similarly, we 

find the amplitudes of reflected and transmitted qSV and qP-waves. Thus, the reflection and transmission 
coefficients of reflected and transmitted qSV and qP-waves for the incident qSV-wave are given by 
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We come to know that these coefficients depend on elastic constants and the angle of incidence. 

 Next, comparing coefficients of npye   on both sides of those equations, we get 
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c K c c npP c P K

       
   








 

 

  
      

  ,

2
1 23 22 0 24 0 34 24 44 33 23

2
34 34 24 0 44 0 n

g c c npP c P K c c npK c K F c c npK

c K c c npP c P K

      
   





  


 

 

  
      

  ,

2
2 23 22 0 24 0 34 24 44 10 33 23

2
34 34 24 0 44 0 n

g c c npP c P L c c npL c L F c c npL

c L c c npP c P L

      
   





  


 

 

  
      
 

' ' ' ' ' ' ' '

' ' ' ' ,

2
3 23 22 0 24 0 34 24 44 20 33 23

2
34 34 24 0 44 0 n

g c c npP c P M c c npM c M F c c npM

c M c c npP c P M

        
   








 

 

  
      
 

' ' ' ' ' ' ' '

' ' ' ' ,

2
4 23 22 0 24 0 34 24 44 30 33 23

2
34 34 24 0 44 0 n

g c c npP c P N c c npN c N F c c npN

c N c c npP c P N

        
   








 

 

      5 44 n 24 0 n 34 n 44 0g c K c P np F c K c P np          
 , 

 

      6 44 n 24 0 1n 34 n 44 0g c L c P np F c L c P np          
 , 

 

      ' ' ' '
7 44 n 24 0 2n 34 n 44 0g c M c P np F c M c P np        , 

 

      ' ' ' '
8 44 n 24 0 3n 34 n 44 0g c N c P np F c N c P np        , 
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,

2
0 23 0 0 24 0 34 0 44 0 0

2
33 0 34 0 34 0 0 44 0 n

h c P K 2c npP c K 2c npK F

c K 2c npK c P K 2c npP

  




 

   




, 

 

        2 2
1 23 0 24 0 34 44 33 34 34 0 44 0 nh c P K 2c npP c K 2c npK F c K 2c npK c P K 2c npP           


 , 

  

    ,2 2
2 23 24 0 34 44 10 33 34 34 0 44 0 nh c L 2c npP c L 2c npL F c L 2c npL c P L 2c npP           


  

 

  
 ' ' ' '

' ' ' ,'

2
3 23 0 24 0 34 44 20

2
33 34 34 0 44 0 n

h c P M 2c npP c M 2c npM F

c M 2c npM c P M 2c npP

   

   








, 

 

  
 ' ' ' '

' ' ' ,'

2
4 23 0 24 0 34 44 30

2
33 34 34 0 44 0 n

h c P N 2c npP c N 2c npN F

c N 2c npN c P N 2c npP

   

   








, 

 

      5 23 0 34 n n 33 n 34 0h c P np c K F c K c P np          
 , 

 

      6 23 0 34 n 1n 33 n 34 0h c P np c L F c L c P np          
 , 

 

      ' ' ' '7 23 0 34 n 2n 33 n 34 0h c P np c M F c M c P np         ,    

 

      ' ' ' '8 23 0 34 n 3n 33 n 34 0h c P np c N F c N c P np         . 

 
Solving Eq.(5.7), we get 
 

  ,   ,    ,    n n n nD E I Jn n n n

0 0 0 0

D E I J

D D D D

      

   

   
   

   
      (5.8) 

where 

  
n 1n 2n 3n

5 6 7 8

5 6 7 8

1 1 1 1

F F F F

g g g g

h h h h

   


  
 

  
     

   

   

   

,   

 
and the values of , ,

n n nD E I     and 
nJ 

 are obtained by replacing first, second, third and fourth column of 

  with column matrix, T   respectively. This equation gives the ratios of the amplitude constants of 
irregular waves corresponding to the vertical components of the displacement. 
 The ratios of the amplitude constants of irregular waves corresponding to horizontal components of 
displacement are obtained with the help of Eqs (3.5), (3.8) and (5.8) as 
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  ,    ,    ,    n n n nD E I Jn n n 1n n 2n n 3n

0 0 0 0 0 0 0 0

A F B F G F H F

A F A F A F A F

          

   

   
   

   
.                (5.9) 

 
 The reflection and transmission coefficients of the first order of approximation for irregularly 
reflected and transmitted qSV and qP-waves are 
 

  

2

nDn n
2sv

0

1 F
r

1 F












 
,          

2

nEn 1n
2p

0

1 F
r

1 F












 
,  

   (5.10) 

  

2

nIn 2n
2sv

0

1 F
t

1 F












 
,            

2

nJn 3n
2p

0

1 F
t

1 F












 
. 

 
 We come to know from Eqs (5.10) that the coefficients corresponding to the irregularly reflected and 
transmitted qSV and qP-waves are functions of the elastic constants, angle of incidence, corrugation and 
frequency parameters. 
 
6. Special case: An interface of cosz d py  

 
 When the interface is represented by only one cosine term, cosz d py , with d as the amplitude of 
corrugation. In this case 
 

  
 if   

 if  .n n

0 n 1

d
n 1

2



    



 (6.1) 

 
 Thus, using these values, the reflection and transmission coefficients for the first order 
approximation of the corrugation are given by 
 

  

2

1D1 1
2sv

0

1 F
r

1 F












 
,          

2

1E1 11
2p

0

1 F
r

1 F












 
,  

   (6.2) 

  

2

1I1 21
2sv

0

1 F
t

1 F












 
,            

2

1J1 31
2p

0

1 F
t

1 F












 
 

 

where values of , , , , , , , 
1 1 1

1 11 21 31 D E I
F F F F   
         and 

1J 
  are obtained from Eq.(5.10) by using Eq.(6.1). 

We will compute these coefficients for a particular model. 
 
7. Particular case 

 
(a) When the two monoclinic half-spaces, M and M' reduce to transversely isotropic half-spaces with the axis 
of symmetry coinciding with the x-axis, we have 
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  ,  ,  ,       ,     12 13 22 33 55 66 23 22 44 14 24 34 56c c c c c c c c 2c c c c c 0         , 

 

 ' ' , ' ' , ' ' ,       ' ' ' ,    ' ' ' '12 13 22 33 55 66 23 22 44 14 24 34 56c c c c c c c c 2c c c c c 0         . 
 
 Using these values in Eqs (5.5), (5.6) and (5.10), we may obtain the reflection and transmission 
coefficients corresponding to the regular and irregular waves. 
(b) If the corrugation of the interface is neglected, i.e., d=0, the problem reduces to the reflection and 
transmission of elastic waves at a plane interface between two monoclinic elastic half-spaces. The reflection 
and transmission coefficients of the reflected and transmitted qSV and qP-waves are given by Eqs (5.5) and 
(5.6). These results exactly match those of Singh and Khurana [11]. 
(c) If the half-space, M' is absent, then the problem reduces to the reflection of qSV and qP-waves for the 
incident qSV-wave. The reflection coefficients are given by Eq.(5.5) with the following modified values 
 
  ,  , 1 2 2 1 D 2 0 0 2 E 0 1 1 0l m l m l m l m l m l m         . 

 
These results exactly match those of Singh and Khurana [6]. 
 
8. Numerical results and discussion 

 
 We will compute the angles of reflected and transmitted waves through Snell's law given by Eq.(3.9) 

in which the apparent velocity ac  is related with the dimensionless velocity by .ac
c 


 Let us find out the 

angles of reflected qSV and qP-waves in the half-space, M. Equation (2.8) may be written as 
 

     4 2 2c cW X WX Y 0                (8.1) 

where 

  ,   ,  ,  ,    ij44
ij2 2 2

442 44 2 44 2 44

ccX Y W
X Y W

cp c p c p
c

c
     


. 

 

 There are two roots of 2c  corresponding to qSV and qP-waves for a given 3

2

p
p

p
  and for a given 

value of 2c , there are two roots of p corresponding to the angles of reflected qSV and qP-waves [29]. 

Substituting the values of X , Y , and W  into Eq.(8.1), we get 
 

  4 3 2
0 1 2 3 4d p d p d p d p d 0     ,                                       (8.2) 

where 

       , ,    ,
22 2

0 33 34 1 24 33 23 34 2 22 33 24 34 23 33d d 2 dc c c c c c c c c c c c c1 2 1 1            

 

        ,   2 4 2 2
3 22 34 23 24 24 34 4 22 22 24c c c c c c c c c c c cd 2 d 1         . 

 

 We transform this equation with 2

3

p1
q

p p
   so that 
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  4 3 2
4 3 2 1 0d q d q d q d q d 0     .                                       (8.3) 

 
 This equation has two positive roots, i.e., a smaller positive root ( )1q  and a larger positive root ( )2q  

which represent the directions of reflected qSV and qP-waves respectively. Thus, tan ( )1
1q   and 

tan ( )1
2q  .  

 Similarly, in the half-space M', the angles of transmitted qSV and qP-waves are obtained as  
 

  tan ( ' )1
1q          and        tan ( ' )1

2q  .  
 
 For the numerical computation, the following relevant values of elastic constants are taken [30]: 
(for half-space, M-Lithium tantalate) 
 

  . / , 11 2
24c 0 11 10 N m      . / ,11 2

23c 0 81 10 N m        ,34c 0      . /11 2
44c 0 94 10 N m  , 

 

  . / , 11 2
33c 2 75 10 N m      . / ,11 2

22c 2 33 10 N m        / .27400 Kg m     
       
(for half-space, M'-Lithium neobate) 
 

  ' . / , 11 2
24c 0 09 10 N m      ' . / ,11 2

23c 0 75 10 N m     ' ,34c 0    ' . /11 2
44c 1 06 10 N m  , 

 

  ' . / , 11 2
33c 2 45 10 N m      ' . / ,11 2

22c 2 03 10 N m        '  / 24700 Kg m     
 

the corrugation parameter, ( ) .cor pd 0 0001   and the frequency parameter, 
0

fr 100
pc


   are taken 

unless otherwise mentioned. Figure 2 represents the variation of angles of reflected and transmitted qSV and 
qP-waves with angle of incidence. We have seen here that the angle of incidence is not equal to the angle of 
reflection. Figures 3-11 represent the variation of reflection and transmission coefficients with the angle of 
incidence for different values of corrugation and frequency parameters, Figs 12-14 represent the variation of 
reflection and transmission coefficients with the corrugation parameter and Figs 15-17 represent the variation 

of reflection and transmission coefficients with the frequency parameter at .020   
 In Fig.2, all angles, ( , , , )    , of the regularly reflected and transmitted waves increase with the 

increase of the angle of incidence ( )0 . It is observed that the angles of reflection and transmission for qSV-

waves are less than that of the qP-waves. Curve I in Fig.3 shows that svr  starts from a certain value which 

decreases to zero at 0
0 15   and then increases up to 0

0 51   with the increase of 0 . Thereafter, it 

decreases, touching zero value at 0
0 87  . In the same figure, Curve II shows that pr  is parabolic in the 

region 0 0
0 35    and then it increases with the increase of 0 . Curve III shows the decreasing nature of 

svt  up to 0
0 81   and then it increases with the increase of 0 , while Curve IV shows that pt  increases 

with the increase of 0 . 
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Fig.2. Variation of the angle of reflection and transmission with the angle of incidence. 
 

 
 

Fig.3. Variation of reflection and transmission coefficients with angle of incidence  0 . 

 
8.1. Effect of corrugation and frequency parameters 

 
 We are interested to see the effect of corrugation and frequency parameters on the reflection and 

transmission coefficients. In Fig.4, the reflection coefficient, 1
sv

r   corresponding to the irregularly reflected 

qSV-wave starts from a certain value and decreases to zero at 0
0 14   creating a parabolic region in 1

0 0
04 81   , which then increases with the increase of 0 . It is observed that 1

sv
r   increases with the 

increase of corrugation (cor) and frequency (fr) parameters. In Fig.5, 1
p

r   creates two parabolic regions in $0

0
0 34    and 0 0

034 90    with the increase of 0 . The values of this coefficient also increase with the 
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increase of cor and fr. We have observed a similar nature of 1
sv

r   and 1
p

r   with 1
sv

r   and 1
p

r   respectively in 

Figs 6 and 7. The coefficient, 1
sv

t   in Fig.8 decreases initially creating a parabolic region in 0 0
037 67    

and then increases with the increase of 0 . It is observed that the values of 1
sv

t   increase with the increase of 

cor and fr. We come to know that 1
p

t   in Fig.9 creates a parabolic region in 0 0
02 64    and then increases 

with the increase of 0 . The value of this coefficient increases with the increase of cor and fr. Similar 

natures of 1
sv

t   and 1
P

t   with 1
sv

t   and 1
p

t   respectively are observed in Figs 10 and 11. 

 

 
 

Fig.4. Variation of 1
sv

r   with 0  for different values of cor and fr. 

 

 
 

Fig.5. Variation of 1
p

r   with 0  for different values of cor and fr. 
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Fig.6 Variation of 1
sv

r   with 0  for different values of cor and fr. 

 

 
 

Fig.7. Variation of 1
p

r   with 0  for different values of cor and fr. 

 

 
 

Fig.8. Variation of 1
sv

t   with 0  for different values of cor and fr. 
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Fig.9. Variation of 1
p

t   with 0  for different values of cor and fr. 

 

 
 

Fig.10. Variation of 1
sv

t   with 0  for different values of cor and fr. 

 

 
 

Fig.11. Variation of 1
p

t   with 0  for different values of cor and fr. 
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 We have seen from Figs 12 and 15 that the coefficients corresponding to the regularly reflected and 
transmitted waves are independent of corrugation and frequency parameters. In Figs 13, 14, 16 and 17, the 
coefficients corresponding to the irregularly reflected and transmitted waves are linearly proportional to 
corrugation and frequency parameters, but at different rates. 
 

 
 

Fig.12. Variation of reflection and transmission coefficients of the regular qSV & qP-waves with cor. 
 

 
 

Fig.13. Variation of reflection coefficients of the irregularly reflected qSV & qP-waves with cor. 
 

 
 

Fig.14. Variation of transmission coefficients of the irregularly transmitted qSV & qP-waves with cor. 
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Fig.15. Variation of reflection and transmission coefficients of the regular qSV & qP-waves with fr. 
 

  
 

Fig.16. Variation of reflection coefficients of the irregularly reflected qSV & qP-waves with fr. 
 

 
 

Fig.17. Variation of transmission coefficients of the irregularly transmitted qSV & qP-waves with fr.  
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9. Conclusion 
 

 The problem of the incident qSV-wave at a corrugated interface between two dissimilar monoclinic 
elastic half-spaces has been investigated. We have obtained the reflection and transmission coefficients for 
the first order of approximation corresponding to regularly and irregularly reflected and transmitted qSV and 
qP-waves with the help of Rayleigh's method of approximation. These coefficients are computed numerically 
for a specific model and the effect of corrugation and frequency parameters on these coefficients is 
discussed. We may conclude with the following remarks: 
(i)  All coefficients corresponding to regular waves are functions of the angle of incidence and elastic 

constants, while those of irregular waves are found to be functions of the angle of incidence, elastic 
constants, corrugation and frequency parameters. 

(ii)  Theoretically and numerically, the reflection and transmission coefficients of the regular waves are 
independent of corrugation and frequency parameters. 

(iii)  The coefficients corresponding to irregular waves are found to be linearly proportional to corrugation 
and frequency parameters. 

(iv)  It is found that the values of coefficients corresponding to irregular waves increase with an increase of 
cor and fr. 

(v)  The values of coefficients corresponding to irregular waves are found to be small. 
 
Nomenclature 

 

, , ,  ,  , 

, , ,  ,  , ,  

,

 

,n n n n

n n n n

A D A D B E

I

G

G I H J H J

   

   
  – amplitude constants 

 c  – phase velocity 
 ijc   – elastic constant  

 d  – unit displacement vector 
 ije   – strain tensor 

 
, , , , , 

, , ,

0 10 n 1n

20 30 2n 3n

F F F F F

F F F F

 

 
  – coupling constants 

 k  – wave number 
 p  – unit propagation vector 
 pd   – corrugation parameter 

 , , , n n
sv p sv p

r r r r    – reflection coefficients 

 , , , n n
sv p sv p

t t t t    – transmission coefficients  

 u  – displacement 
 n   – coefficients of Fourier series 

 ij   – stress tensor 

 
0pc


  – frequency parameter  
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